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Abstract We present G2C, a goal-driven specification language for dis-
tributed applications. This language offers support for the declarative
specification of functionality goals and security properties. The former
comprise the parties, their inputs, and the goal of the communication
protocol. The latter comprise secrecy, access control, and anonymity re-
quirements. A key feature of our language is that it abstracts away from
how the intended functionality is achieved, but instead lets the system
designer concentrate on which functional features and security properties
should be achieved. Our framework provides a compilation method for
transforming G2C specifications into symbolic cryptographic protocols,
which are shown to be optimal. We provide a technique to automatically
verify the correctness and security of these protocols using ProVerif, a
state-of-the-art automated theorem-prover for cryptographic protocols.
We have implemented a G2C compiler to demonstrate the feasibility of
our approach.

1 Introduction

Designing cryptographic protocols is tremendously difficult and error-prone. Pro-
tocol designers struggle to keep pace with the variety of possible security vulnera-
bilities, which have affected early authentication protocols such as the Needham-
Schroeder protocol [19,31], carefully designed de facto standards like SSL and
PKCS [46,8], and even widely deployed products such as Microsoft Passport [21]
and Kerberos [11]. The task of designing cryptographic protocols is made more
and more challenging by the dimension and complexity of modern distributed
architectures (e.g., collaborative platforms, content sharing applications, social
networks) and the number of security properties that have to be simultaneously
fulfilled (e.g., user anonymity, access control, secrecy, and authentication). There
are only few suitable guidelines [3] or automated tools [36,14,47,14,22,6,40] to as-
sist system designers and, at present, the development of cryptographic protocols
is mostly carried out by relying on common practice and on the creativity and
experience of designers, rather than on rigorous and formal design techniques.

Recent research has started to address this problem by providing techniques
to compile high-level protocol specifications into concrete cryptographic proto-
cols [6,22,40] or to strengthen existing cryptographic protocols and make them
resistant to sophisticated threat models [4]. These approaches, however, take as



input a detailed specification of the structural aspects of the protocol: one has
to describe in depth which messages are exchanged between which participants
and, in some cases, even which cryptographic primitives are used. In general,
these techniques require expert knowledge in current security research and, ar-
guably, they are hardly accessible to system designers. Ideally, designers should
be required to solely state in a simple, yet precise, manner which functionality
should be realized and which security properties should be guaranteed, without
necessarily having to think how this can be achieved.

1.1 Contributions

Inspired by the increasingly popular approach of declarative networking
[30,29,48,34] — a high-level programming paradigm to conveniently describe
and implement distributed systems — we propose G2C, a concise, goal-driven
specification language for distributed applications. G2C allows the designer to
specify the functionality of the protocol and the desired security properties (se-
crecy, access control, and anonymity) without specifying the actual communica-
tion patterns or the cryptographic infrastructure, in the spirit of “say what you
want, not how to do it.” Only the following information has to be specified: the
protocol input (given facts like information from some customers), the desired
protocol functionality (the survey institute obtains a statistical analysis of the
customer’s review) and the desired security properties (the customers’ review
should not leak out and customers should stay anonymous).

We present a compilation technique from G2C specifications into Dolev-
Yao-style protocols expressed in the applied π-calculus [1]. This compilation
is achieved using a combination of standard public-key encryptions and sig-
natures, and, if necessary to achieve anonymity properties, broadcast encryp-
tions [20,9,10] and ring signatures [38,26,12]. Our compiler first generates several
candidate protocols and then automatically selects the protocol that minimizes
the structural complexity.

We finally present an automated validation technique to check the correctness
and the security of the synthesized cryptographic protocols using ProVerif [7], a
state-of-the-art theorem prover based on Horn-clause resolution that yields secu-
rity proofs for an unbounded number of protocol sessions. Our compiler embeds
ProVerif annotations in the synthesized applied π-calculus code. These annota-
tions allow for the validation of functional correctness, secrecy, and access con-
trol. The compiler additionally generates ProVerif bi-processes that capture the
intended anonymity properties. In general, this translation validation approach
has the advantage that even if we apply drastic optimizations, or completely
reimplement the transformation, we do not need to redo any proofs. While a
direct proof of correctness of the translation would provide stronger guarantees
for any generated protocol implementation without relying on any validator, this
far-from-trivial proof would need to be redone every time the transformation is
changed, e.g., to apply optimizations or to consider additional security proper-
ties. We believe that the added benefits of having such a direct proof are greatly
outweighed by the amount of work necessary to create it and keep it up-to-date
as the transformation evolves.



1.2 Related work

In declarative network systems, which our approach is inspired by, such as
P2/Overlog [30], NDlog [29], SeNDlog [48], the actions for each network node
have to be specified. Similarly, in process calculi [32,1,2], it is necessary to spec-
ify both source and destination as well as the content of network messages. This
holds true also for the number of languages for the specification of multiparty
sessions that have been proposed in the last years [17,16,6,22]. In all these ap-
proaches, protocol designers have to specify concrete actions for each principal.
As shown in the figure below, our approach provides a higher level of abstraction
that lets the designer focus on what goals should be achieved, without specifying
how this can be done, i.e., omitting the protocol details.
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Figure 1: Positioning of our work. While existing approaches concentrate on design-
ing and reasoning about symbolic protocols and corresponding implementations, we
provide a more abstract layer for the specification functionality goals and security
properties, together with a compilation procedure to symbolic protocols.

A data model [5] that resembles the model we use in G2C has been used to
specify the HIPAA privacy rule [43], which regulates the transmission of pro-
tected health information by hospitals, doctors, insurance companies, etc. These
privacy provisions, stated in terms of logical formulae, can be expressed in our
language. Moreover, our framework is fine-grained enough to support both roles
and groups of principals. In the HIPAA data model, each statement is dedicated
to a single principal. In contrast, our framework allows statements to represent
information of several principals (e.g., the result of the statistical analysis of
customers’ reviews). Jif [33] is a version of Java that incorporates a type system
for the enforcement of secure information flow; Jif/Split [14] is an extension of
Jif that automatically partitions programs to run securely on a distributed sys-
tem. Fabric [28] is an extension of Jif/Split that allows new nodes to join the
system and supports consistent, distributed computations over shared persistent
data. Jif/Split and Fabric deal with confidentiality and integrity, but they do not
address anonymity. AURA [27] is a typed language for authorization and audit
that includes mechanically verified proofs of the decidability. AuraConf [44] is
an extension of Aura that deals with confidentiality properties. In contrast to
our approach, neither Aura nor AuraConf focus on the automated generation of
cryptographic protocols and do not address anonymity properties. An approach
in the area of trust-negotiation protocols [13] is close to our approach of mini-



mizing the cost of a DAG, i.e., minimizing the amount of necessary prerequisites
in order to achieve a given goal.

Translation validation [37] is an accepted technique for detecting compiler
bugs and preventing incorrect code from being run. Since the validator is usually
developed independently from the compiler and uses very different algorithms,
translation validation significantly increases the confidence of the user in the
compilation process. The validator can use a variety of techniques, ranging from
program analysis and symbolic execution [35,42] to model checking and theorem
proving [37]. We use ProVerif to validate the results of our compilation.

1.3 Outline

The remainder of this paper is organized as follows. For the sake of exposition,
Section 2 introduces our framework by means of an illustrative example, Sec-
tion 3 presents the compilation to symbolic protocols. Section 4 explains how
anonymity is achieved and verified. Finally, Section 5 concludes.

2 Illustrative Example

The language G2C is best explained by means of an illustrative example of a
goal-driven G2C specification. (We refer to Appendix A for a formal grammar of
the G2C syntax.) In this example, information about different topics is collected
from a set of customers (collection phase). This information is evaluated, i.e.,
using some statistic analyses by a manager (evaluation phase), and then sent
to a survey institute that can publish the final document (publication phase).
Among other functional goals and security constraints, the goal of this protocol
is to ensure (1) anonymity of the customers who initially have some private or
confidential information and (2) anonymity of the manager who evaluates the
collected information. In this case, the final document can only be signed by a
member of a pool of trustworthy managers, but the survey institute shall not
know who the responsible manager is who actually signed the document.

Principals. The G2C specification for such a protocol defines a set of principals P
occurring in the system. Each principal is assigned one or more tags ti ∈ T . By
default, each principal p ∈ P is implicitly tagged by a tag with his own name p,
i.e., the set of tags T is implicitly extended to comprise P if necessary.

For this example, there are some customers tagged customer, and some man-
agers tagged manager, and the survey institute tagged government:

Principals:

cust1 : customer

cust2 : customer

...

mng1 : manager

mng2 : manager

...

surveyinstitute : government



Tags. Both principals and statements (see below) are tagged. These tags can
be related via a partial-order relation, a tag lattice with a least element public,
which provides an access control mechanism for statements: principal p tagged tp
may only access statements tagged ts ≤ tp. Intuitively, the higher the position
of a tag ts ∈ T in the lattice, the more confidential are the statements tagged
by ts. The usage of tags allows us to build upon several role-based access con-
trol mechanisms [18,45,39]. The presented example does not use an explicitly
specified lattice, only the implicit relation ∀ t ∈ T . public ≤ t.

Statements. The specification defines a set S of statements that occur in the
system. Statements can be considered as place-holders for the actual values in a
protocol run. At specification time, these values are irrelevant in the sense that
they do not affect the protocol construction. For this reason, we symbolically
abstract values as statements. The syntax of a statement specification is of the
form s : t, where s ∈ S and t ∈ T . Arguments can be constants (lowercase
strings and numbers), variables (strings beginning with an uppercase letter) or
wildcards (*). The tags on the right-hand side of the colon can be either constants
or variables that are bound in the argument list of the specified statement.

Statements:

document(2011) : manager or government

info(*) : customer or manager

manager_pwd() : manager

The statements in this case are: document(2011), which represents the final
document that is created by the managers for the year 2011. It is accessible for
all principals that are tagged manager or government. The statements called
info(topic) contain the information that is collected in the collection phase
for a specific topic. These statements are accessible for customers and managers.
They can be parameterized to specify which particular information the state-
ment contains. The statement manager pwd() is a password that is necessary to
compute and trustworthily sign the document. Its content is only accessible for
those principals that are tagged manager.

Inputs. Initially, each principal p ∈ P has some input statement s ∈ S to
the system. These inputs are captured in the input section. The syntax is s @ p.
In our example, the customers have information about certain topics, and all
managers have the manager password.

Input:

info(*) @ $PRINCIPALS_TAGGED(customer)

manager_pwd() @ $PRINCIPALS_TAGGED(manager)

The G2C language supports some syntactic sugar. The input specification ex-
pression s @ $PRINCIPALS TAGGED(t) is evaluated to a list of input specifications
s @ p1, s @ p2, . . . , where pi ∈ P are the principals that are declared to have tag t.
Statements may be parameterized by constants and wildcards.



Functional goals. A functional goal of the protocol is to make the document
available to the customers. The goal section states these goals by listing state-
ments at principals. It is syntactically similar to the input section.

Goals:

document(2011) @ surveyinstitute

Rules. In order to enforce the stated functional goals, a set of computation
rules R has to be specified. In the section for rules, computations are abstractly
specified using arbitrary function symbols like create document. The intuition
behind rules is that anyone can compute the head of a rule (in this case the
statement document) whenever all computation arguments are available (in this
case the manager password and the information about the topics).

Rules:

document(2011) :- create_document[

info(topic1), info(topic2), ...,

manager_pwd()

]

More formally, a computation rule r ∈ R is a variant of a Horn clause of the
form h :- f [b1, . . . , bn]. The head h of r is a statement possibly parameterized by
constants or by variables. The right-hand side of the rule operator :- contains
the body of r. The body comprises a function symbol f and a list of comma
separated statements bi. These statements can be parameterized by constants
and variables. The variables must be bound as parameters of h. We stress that,
for the reason of abstraction, the specification does not take the semantics for
the specified function symbols into account. Any principal p can compute h
whenever p knows all statements bi. For each rule, our compiler automatically
derives the set of principals that can apply that rule.

Anonymity. The security goals supported by G2C are secrecy and access control
(as specified by the statement tags) and anonymity. The latter is captured in
the anonymity section. An anonymity specification is a tuple (s,A,F). The first
component s ∈ S is a statement. The second component A ⊆ P, the among-
set, is a set of principals that shall be anonymous among each other. The third
component F ⊆ P, the for-set, is a set of principals that shall not be able to
distinguish who in the among set is involved in the computation of s. This
notion of anonymity is similar to the concept of k-anonymity [41,15], which
states the impossibility to determine who among k users is active. Our definition
is more fine-grained in that it specifies the action with respect to which the user
should stay anonymous and also the intended distinguishers (implicitly, the for-
set additionally includes external observers eavesdropping the communication).

Anonymity:

document(2011) among { cust1,cust2,... } for { surveyinstitute }

document(2011) among { mng1,mng2,... } for { cust1,cust2,... }

document(2011) among { mng1,mng2,... } for { surveyinstitute }



Intuitively, the first of the above specifications means that in the final document,
all customers shall be anonymous among each other for the survey institute.
This implies that the survey institute shall not be able to distinguish whether
cust1 or whether cust2 was involved in the final document. The second and
third specifications demand that the managers be anonymous for the customers
and the survey institute, respectively. In other words, neither a customer, nor
the survey institute shall learn who the actual manager is that has created and
signed the document.

3 Compilation to Symbolic Protocols

In the first step (Section 3.1), an intermediate representation of the specification,
a so called data flow graph, is generated. This graph is constructed based on the
specified goals, the input patterns, and the corresponding computation rules. The
access control specifications for the declared statements are also considered in
order to prevent the graph from growing too fast. In the second step (Section 3.2),
the data flow graph is condensed in that optimal nodes and edges are selected
with respect to the overall communication complexity the final protocol would
have. In the third step (Section 3.3), the paths of the condensed graph are
translated into a cryptographic protocol expressed in the applied π-calculus.

3.1 Intermediate representation as data flow graphs

This section formally defines data flow graphs. Data flow graphs serve as an
intermediate representation of the protocol specification where nodes represent
knowledge of principals, and edges represent the flow of knowledge between
principals (i.e., the communication patterns). This data structure provides all
necessary information for generating a cryptographic protocol in a symbolic cal-
culus. Data flow graphs are constructed by an iterative bottom-up procedure,
which is best explained using the illustrative example of Section 2.

Example graph. The data flow graph for the example of Section 2 is illustrated
in Figure 2. Data flow graphs are constructed in a bottom-up manner, starting
with the specified goal nodes (doubly circled), which are added to an exploration
queue of nodes that have to be explored further. For each node from the queue,
the following three exploration steps are performed:

(1) Possible flows from other knowledge nodes (round shape) are consid-
ered in case the access control specifications permit these flows. In the exam-
ple, there are flows from the managers’ knowledge nodes, document(2011)@mng1

and document(2011)@mng2. These knowledge nodes, if not existent yet, are created
within this first step and then added to the exploration queue.

(2) If the statement of the currently explored node is an instantiation of
the head statement of a computation rule, a new computation node (rectangu-
lar shape) is created and added to the queue. Moreover, the inputs for such
a computation, again knowledge nodes, are created and added to the queue.
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Figure 2: Data flow graph for the example of Section 2. For the sake of readability,
the graph contains only two customers, two managers, and only information about
two topics; some statements are abbreviated; the costs for edges and computations are
omitted. An optimal selection of edges is colored in gray (cf. Section 3.2).

In the example above, the computation nodes are localComp(document(2011)@mng1)

and localComp(document(2011)@mng2). The inputs to those computation nodes are
knowledge nodes representing information about certain topics and the manager
password.

(3) The statement of the currently explored node is matched against the
input patterns that are provided in the specification. If an instantiation of an
input pattern matches the node statement, a new input node (diamond shape)
is created. This node is not added to the queue as it is not explored further.

Due to this bottom-up construction, and to the immediate instantiations of
variables, nodes with neither preceding computation node nor input node might
be added to the queue. Therefore, in the end, subgraphs that have no input node
as ancestors are removed from the graph.

The edges of the data flow graph express possible communication structures
of the synthesized protocol. Edges labeled flow connect two knowledge nodes
that consist of the same statement, but at different principals. These edges cor-
respond to messages that are sent in the synthesized cryptographic protocol.
Edges labeled localComp, compArg, or input are virtual edges — they do not
represent actual network messages.

Data flow graphs, formally. A data flow graph consists of a set of nodes N
and a set of edges E . The nodes are split into three disjoint sets: input nodes
Ni ⊆ {input(S@P )}S∈S,P∈P , knowledge nodes Nk ⊆ {S@P}S∈S,P∈P , and com-
putation nodes Nc ⊆ {localComp(S@P )}S∈S,P∈P . A subset of the knowledge
nodes Ngoal ⊆ Nk is called goals. The set of edges is split into the disjoint sets of
input edges Ei, flow edges Ef , computation argument edges Ea and computation
result edges Er.



Nodes. A data flow graph for a given specification is the smallest graph satis-
fying the following rules. The numbers refer to the aforementioned explorations.

input(S
∗
@P ) ∈ SPEC S /∼S

∗

input(S@P ) ∈ Ni

NInput(3) input(S@P ) ∈ Ni

(S@P ) ∈ Nk

NKnowInput(3)

rule(S
∗ ← f(S

∗
1 , . . . , S

∗
n)) ∈ SPEC

∀i. (Si@P ) ∈ Nk 〈S, S1, . . . , Sn〉 /∼R S
∗ ← f(S

∗
1 , . . . , S

∗
n)

localComp(S@P ) ∈ Nc

NComputation(2)

goal(S@P ) ∈ SPEC

(S@P ) ∈ Ngoal

NGoal(init)
localComp(S@P ) ∈ Nc

(S@P ) ∈ Nk

NKnowComp(2)

(S@P
′
) ∈ Nk may access(P, S)

(S@P ) ∈ Nk

NKnowFlow(1)

NInput introduces input nodes for instantiated statements S@P that match
an input pattern S∗@P from the specification. S /∼S∗ denotes that S is a state-
ment instantiation of S∗, i.e., wildcards * and variables in S∗ are consistently
instantiated, and /∼R denotes a rule instantiation The details of the instantiation
procedure are described in the long version [23]. We stress that the instantiation
in NInput is minimal in the sense that only those statements are generated
that are necessary to reach the goals (this prevents the graph from growing
more than required). Hypotheses of the form X ∈ SPEC assume X to occur in
the G2C specification. NKnowInput creates knowledge nodes from input nodes.
NComputation creates computation nodes for existing knowledge nodes Si@P
and a computation rule occurring in the specification. NGoal directly intro-
duces goal nodes from the specification. NKnowComp creates knowledge nodes
from computation nodes. NKnowFlow creates knowledge nodes from existing
knowledge nodes if the access control specification permits this step, i.e., the
premise may access(P, S) holds.

Edges. We define the edges E as the smallest set satisfying the following rules:

ni = input(S@P ) ∈ Ni nk = (S@P ) ∈ Nk

(ni, nk) ∈ Ei
EInput(3)

n1 = (S@P1) ∈ Nk n2 = (S@P2) ∈ Nk

(n1, n2) ∈ Ef
EFlow(1)

nk = (S@P ) ∈ Nk nc = localComp(S
′
@P ) ∈ Nc

rule(S
∗ ← f(S

∗
1 , . . . , S

∗
n)) ∈ SPEC S

′ /∼S
∗ ∃i : S /∼S

∗
i

(nk, nc) ∈ Ea
ECompArg(2)

nc = localComp(S@P ) ∈ Nc nk = (S@P ) ∈ Nk

(nc, nk) ∈ Er
ECompRes(2)

Given an input node and a knowledge node, EInput creates an input edge
(labeled input). EFlow creates flow edges between knowledge nodes (labeled
flow). Computation argument edges (labeled compArg) from knowledge node nk
to computation node nc are introduced by ECompArg in case the statement
of nk is a valid instantiation of an argument of the computation rule contained
in nc. The knowledge node representing the result of a computation is connected
via ECompRes.

We stress that data flow graphs are finite since there are only finitely many
statements, finitely many principals, and finitely many constants.



3.2 Condensed data flow graphs – selection of the protocol skeleton

The idea behind condensing a data flow graph is to find a minimal subset E ⊆ E
of edges, such that all goal nodes are active in E. Informally, a knowledge
node nk is active if at least one direct predecessor of nk is active, a computation
node nc is active if all predecessors of nc are active, input nodes are always
active. In Figure 2, both computation nodes localComp(document(2011)@mng1) and
localComp(document(2011)@mng2) are active since all necessary inputs are available
and hence, all predecessor knowledge nodes are active. For the same reason,
the goal node document(2011)@surveyinstitute is active as well. The selected subset
of edges is depicted with a gray background. There are several other subsets of
edges that make the goal node active. For example, principal cust2 could also give
his inputs; or principal mng1 could provide the password.

Besides the condition that, in the final synthesized protocol, all goal nodes
must be active, we require that the final protocol be minimal, i.e., the message
complexity of the final protocol must not exceed the complexity of the syn-
thesized protocol that has lowest complexity. This minimal subset of edges is
referred to as protocol skeleton or condensed data flow graph. It constitutes the
communication structure of the synthesized protocol.

Message complexity. In order to optimize the communication and computa-
tion complexity of synthesized protocols, we show a measure of the complexity
for sent messages and for computed statements. Computing the minimal number
of messages sent around the network requires to take reuse of computed infor-
mation into account. The problem can be formulated as the task of finding a
spanning tree, an acyclic subset of the edges from the data flow graph, such that
all goal nodes can be computed with minimal cost. This problem is a classical
planning problem [25], mostly investigated by the AI community.

The precise optimization problem MinMsgCplx (G) is defined as follows.
Given a directed acyclic flow graph G = (N , E) in which the nodes are split
into two disjoint sets: N = Nk ·∪Nci with Ngoal ⊆ Nk and Nci = Nc ·∪Ni. In-
tuitively, a node n ∈ Nk depends on only one of its predecessor nodes, whereas
n ∈ Nci depends on all predecessor nodes. Each edge e ∈ E ⊆ N ×N is assigned
a cost c(e) ∈ N. The goal is to compute a valid set E ⊆ E such that

∑
e∈E c(e) is

minimal. A set E ⊆ E ⊆ N ×N is valid (i.e., it fulfills the graph constraints) if

1. ∀n ∈ Ngoal : n is active in E.
2. ∀n ∈ Nk active in E, ∃m ∈ N : (m,n) ∈ E.
3. ∀n ∈ Nci active in E, ∀m ∈ N : (m,n) ∈ E ⇒ (m,n) ∈ E.

where n ∈ N is active in E whenever ∃m ∈ N with (n,m) ∈ E or (m,n) ∈ E.

Define the decision problem MsgCplx (G, c∗) that asks whether there is a
subset of edges E ⊆ E satisfying

∑
e∈E c(e) ≤ c∗.

Theorem 1. MsgCplx is NP-complete.

We refer to Appendix B for the proof.



Graph constraints in SAT. In order to select nodes and edges, thereby enforc-
ing the graph constraints, the data flow graph is translated into a satisfiability
problem with clauses in disjunctive normal form. Each variable ve of the SAT
problem represents an edge e ∈ E . Iff in a satisfying assignment of variables, vari-
able ve is true, then e is selected. From all satisfying assignments of variables, the
assignment that minimizes

∑
e∈E e · c(e) is eventually chosen as communication

structure for the final protocol. Our framework uses a state-of-the-art constraint
solver, Gecode [24], in order to obtain an optimal solution.

ngoal

i1
i2

o1
o2

The translation of the graph constraints corresponds
closely to the above definition of valid edge sets. For
demonstration issues, we assume only two incoming edges
and two outgoing edges per node. (1) For goal nodes with
incoming edges i1 and i2, we post the constraint

i1 ∨ i2

since at least one of i1 and i2 must be active in order to
activate ngoal. The outgoing edges are not necessary to
activate ngoal.

nk

i1
i2

o1
o2

(2) The incoming edges of a knowledge node nk shall
only be active if at least one of the outgoing edges is active.
For each outgoing edge oj , we post the constraint

oj → (i1 ∨ i2)

which represents the clause oj ∨ i1 ∨ i2.

nc

i1
i2

o1
o2

(3) The scenario for computation nodes is slightly more
complex. For a computation node nc to be active, all in-
coming edges, hence all direct predecessors of nc must be
active. For each outgoing edge oj , we post the constraint

oj → (i1 ∧ i2)

which is equivalent to the formula oj∨(i1∧i2). This formula
is translated to two clauses oj ∨ i1 and oj ∨ i2.

Cycles. Consider goal nodes u and v that are connected via two flow edges
(u, v) and (v, u). The constraints for knowledge nodes are satisfied if both theses
edges are active. Such cycles, of course, do not solve the problem of activating
goal nodes. In order to prevent these cycles in the SAT instance, we post more
constraints: Given knowledge node nk with incoming flow edge i, for each out-
going flow edge o, we add the constraint i→ o, which corresponds to the clause
i∨o. This prevents node nk from acting as “knowledge forwarding” node. Edges
from input nodes are not considered, nor are edges from computation nodes.

3.3 Synthesizing cryptographic protocols for the applied π-calculus

We now detail the translation from a condensed data flow graph into a cryp-
tographic protocol in the applied π-calculus [1]. We build a process for every



principal P involved in the protocol. The final protocol consists of the parallel
execution of all principal processes, i.e., all principals run concurrently. We as-
sume all principals to be semi-honest, i.e., principals follow the protocol properly,
but are curious in that they attempt to learn additional information.

First, we describe the translation of the specified functional goals (together
with their annotations for the ProVerif validation) and the security properties.
Second, we show how the obtained processes can be modified in order to validate
the desired anonymity requirements in ProVerif.

∗ An input with corresponding input node input(s@p) is expressed in the process
of principal p as a restriction of a fresh name s. This captures the intuition
that, initially, the statement s is only known to principal p. Moreover, the
event event s is raised, which states that the input has taken place. Events
will be used later in order to show that a computation can only take place
if all proper inputs are available.

∗ A computation at node localComp(s@p) with function symbol f and arguments
arg1,arg2,... is translated for the process of principal p into a constructor ap-
plication f(arg1,arg2,...). Every such application is followed by the event event s

in order to track that computation.
∗ A goal with corresponding goal node s@p raises the event event s. This is

necessary to verify the reachability property of functional goals (see below).

For the purpose of validation, we insert correspondence queries for each com-
putation: every computation h :- func[b1,. . .,b`] in the G2C specification is
translated into a ProVerif query of the form query ev:h ==> ev:b1 & . . . & ev:b`. to val-
idate the functional goals of our protocols. Since event h and the corresponding
symbolic term must be preceded by all the events b1 to b` along with the corre-
sponding symbolic terms, such queries ensure that all computations are executed
only with the expected inputs. For each goal s@p, we insert a query of the form
query ev:s. If ProVerif successfully validates all queries, then all computations are
well-formed and all goal nodes are reachable.

Flow edges are the only edges that are explicitly modeled in the symbolic
protocol. These flows represent the actual communication over a public network.
Loosely speaking, the sender first signs the message to ensure its integrity and
then encrypts the resulting signature for the recipient to protect the statement’s
confidentiality. If the G2C specification includes anonymity requirements, then
the implementation of the flow edges relies on more sophisticated cryptographic
primitives, as detailed in the next section. For the validation of secrecy for state-
ments, we use ProVerif’s standard secrecy queries.

4 Anonymity

Anonymity is a security property that reasons about knowledge that principals
have or do not have. Intuitively, a principal p is anonymous while performing
some action α if no other principal p′ has any knowledge about that action. If
p′ has the knowledge that action α took place, but if p′ is not able to determine



which principal from a set A of principals actually performed that action, then
we say that p is anonymous in action α among A for p′. If any subset of principals
F is not able to distinguish individual principals from A in action α, we say that
principal p is anonymous in α among A for F . In the following, we call A the
among-set and we call F the for -set.

4.1 Anonymity as symmetric paths in the graph

Intuitively, the anonymity requirement (s,A,F) is fulfilled if for each pair of
principals p, p′ in A, there exist two subgraphs, both leading to goal s, which are
equal up to the identities of p and p′. More precisely, if p is active in goal s, i.e.,
p contributes to the goal nodes with statement s, then for each other principal
p′ ∈ A, there must be another subgraph, such that, after replacing all principals
not in the among-set, nor in the for-set by a special symbol ], and after replacing
the two compared principals p and p′ by a special symbol •, the corresponding
subgraphs are equal.

For a more formal definition, let Ngoal(s) be the set of goal nodes in which
statement s occurs. Let G be a minimal subgraph such that all goal nodes are
active (as described in Section 3.2). For all goal nodes n ∈ Ngoal(s), for all
p, p′ ∈ A with p 6= p′, we check that one of the following cases is satisfied:

1. p is inactive in n, i.e., for all edges ei = (u, v) ∈ G that are (not neces-
sarily direct) ancestor edges of n, we have prin(u) 6= p 6= prin(v), where
prin(s@p)=p is the principal for node (s@p).

2. p is active in n and there exists a subgraph G′ in which p′ is active so that
for qi ∈ P \ (A ∪ F) the following subgraphs are equal:

G
{
]/q1
}
. . .
{
]/q`
}
{•/p} = G′

{
]/q1
}
. . .
{
]/q`
}
{•/p′}

The substitution G{a/b} replaces all occurrences of b in G by a. This affects
statements and principals.

A

Z

 B

G G'=/σ
C D

A

Z

 B

G G'=/σ
A A

Example. Consider the examples depicted on the right.
There are two ways of achieving the goal Z. If A =
{A,B}, we require that the subgraphs G and G′ be equal
up to the identities of A and B. For the first example,
this requires among others that principals C and D do
not occur in F : they know whether they were involved
in the protocol. In this case, the substitution σ replaces
all occurrences of C and D by ] before the subgraphs
are compared. For the second example, as both A and B
occur in A, σ replaces only the occurrences of A and B
by •. This means that (although only A occurs in both
G and G′), the resulting subgraphs are equal.



4.2 Cryptographic primitives for anonymity

Digital signatures and encryption schemes preserve the integrity and the pri-
vacy of data, respectively. In general however, these primitives do not suffice to
enforce anonymity requirements. For instance, a digital signature immediately
reveals the signer’s identity and a ciphertext may reveal the intended recipient.
We address these issues by deploying ring signatures [38,26,12] and broadcast
encryptions [20,9,10].

A ring signature preserves the integrity of the signed message but the signer
remains anonymous within a chosen group of people. More formally, the signer
first decides on the ring he will use. A ring is an arbitrary group of people in-
cluding the principal himself. He collects the (public) verification keys of all ring
members and his own signing key. The resulting ring signature reveals only the
fact that one person in the ring signed the message but does not reveal the
actual signer. Ring signatures are thus a salient tool to protect the anonymity
of principals in the among-set when sending messages to principals in the for-
set (referred to as forward anonymity in the following). More formally, given
an anonymity specification (s,A,F), whenever communication takes place be-
tween a principal pA in A and a principal pF in F , pA uses a ring signature
where the ring consists of all principals from A. We model ring signatures in
the applied π-calculus with the constructor rnsign(m,sk1,vk2,. . .,vkn) where
(vki,ski) denotes the i-th ring member verification key/signing key pair. The
ring signature verification rncheck(s,vk1,vk2,. . .,vkn) succeeds and returns
m if and only if s= rnsign(m,sk1,vk2,. . .,vkn). Here, the first principal signs
the message. However, by extending the destructor reduction rules to handle
permutations, we allow the actual signer to occur on arbitrary position.

Dually, we use broadcast encryption schemes to protect the anonymity of
principals within the among-set when receiving messages from principals within
the for-set (backward anonymity). More precisely, given an anonymity specifica-
tion (s,A,F), when a principal pF ∈ F communicates a message to a principal
pA ∈ A, then pF is required to use a broadcast encryption involving the public
encryption keys of all principals in A. This encryption ensures that the cipher-
text is addressed to the correct set of principals and that the same plaintext is
broadcast to all those principals. One might be tempted to simply require prin-
cipals in the for-set to issue one encryption for each member of the among-set.
A corrupted sender, however, could send only one encryption for a single prin-
cipal in the among-set thus exploiting a termination channel. Alternatively, the
sender could send different messages to different principals and then determine
the active principal’s identity by scrutinizing the output of a computation. In
principle, it is also possible to use zero-knowledge proofs to counter the afore-
mentioned attacks. However, broadcast encryptions entail a significantly lower
computational overhead while achieving the same goal: the sender only creates
one single ciphertext and the decryption will reveal if that ciphertext was indeed
addressed to the proper group of people. For instance, the broadcast encryption
scheme by Boneh et al. [9] requires that the encryption keys of all among-set
members be available: we model broadcast encryptions with the constructor



bnenc(m,ek1,ek2,. . .,ekn) where (eki,dki) denotes the i-th principal’s en-
cryption key/decryption key pair. The decryption bndec(e,ek1,dk2,. . .,ekn)
succeeds and returns m if and only if e= bnenc(m,ek1,ek2,. . .,ekn). As seen
for ring signatures, the destructor is applicable independently of the position of
the party decrypting the ciphertext.

We finally remark that both ring signatures and broadcast encryptions are
very efficient cryptographic schemes.

Example. Let us exemplify the notions of forward and backward anonymity on
the anonymity specification from Section 2:

Anonymity:

document(2011) among { cust1, cust2 } for { surveyinstitute }

document(2011) among { mng1, mng2 } for { cust1, cust2 }

document(2011) among { mng1, mng2 } for { surveyinstitute }

For the first specification, as the customers never directly communicate with
the survey institute, we do not take special precautions: we assume that only
principals listed in the for-set are corrupted and thus the managers do not reveal
the identity of the customers. Hence, the privacy offered by encryption schemes
is sufficient to conceal the identity of the originator of a message.

The second specification requires the customers to use a broadcast encryption
(backward anonymity): the manager will receive the input directly from the
customers who should not be able to distinguish one manager from another.
The simplified applied π-calculus code looks as follows:

Customer 1:

... new topic1; (* input *)

out(c, b2enc(sign(topic1,sk_cust1),ek_mng1,ek_mng2)); ...

Manager 2:

... in(c, esv_topic1); (* signed-then-encrypted *)

let sv_topic1 = b2dec(esv_topic1,ek_mng1,dk_mng2) in

let v_topic1 = check(sv_topic1,vk_cust1) in ...

Since the customer is not required to remain anonymous for the managers, it is
sufficient for him to use a digital signature rather than a computationally more
involved ring signature.

The third specification demands that the survey institute does not learn
which manager collected the customer data (forward anonymity); the active
manager uses a ring signature where the ring comprises all managers:

Manager 2:

... let document = create_document(topic1,topic2,manager_pwd) in

out(c, enc(r2sign(document,vk_mng1,sk_mng2),ek_surveyinst)); ...

Survey Institute:

... in(c, esv_document); (* signed-then-encrypted *)

let sv_document = dec(esv_document,dk_surveyinst) in

let v_document = r2check(sv_document,vk_mng1,vk_mng2) in ...



4.3 Verification of anonymity in the synthesized protocol

To verify the given anonymity specification, we use ProVerif’s so-called choice
operator. Intuitively, this operator allows us to model two processes that are
structurally equal but differ only in certain terms. The resulting process is called
a bi-process. We check that the attacker cannot distinguish the two executions
in such a bi-process. Therefore, we let all the principals in F be corrupted, i.e.,
we let them release all their secrets and let them take no further action. The
attacker can thus act arbitrarily on behalf of those principals. We then pick two
principals I, J fromA and construct a bi-process where one choice corresponds to
I’s code and the other corresponds to J ’s code. The graph generation algorithm
ensures that the two processes are structurally equal (cf. Section 4.1) and that
they can be cast into a bi-process. As we verify an equivalence relation, for each
anonymity specification, we only consider a chain of relations and use transitivity
to obtain observational equivalence among all pairs of principals in A.

Example. Let us consider again the above example: the two managers must
remain anonymous for the survey institute. Thus, we cast both managers into a
bi-process. The left process corresponds to manager 1 interacting in the protocol
and the right process corresponds to manager 2 giving input to the survey in-
stitute. As the survey institute occurs in F , we assume it to behave arbitrarily,
and we hence let the attacker impersonate the survey institute.

Manager 1+2:

let document = create_document(topic1,topic2,manager_pwd) in

out(c, enc(r2sign(document,choice[sk_mng1,vk_mng1],

choice[vk_mng2,sk_mng2]),ek_surveyinst));

Survey Institute:

out(c, (vk_surveyinst,sk_surveyinst));

out(c, (ek_surveyinst,dk_surveyinst)).

5 Conclusions and Future Work

We have presented a novel high-level goal-driven specification language, called
G2C, that offers support for the declarative specification of functionality goals
and security properties. We have presented an automated compilation technique
for transforming G2C specifications into corresponding cryptographic protocols,
using a combination of public-key encryption, digital signatures, broadcast en-
cryption, and ring signatures. The specified functionality goals as well as the
secrecy and anonymity properties are automatically validated using ProVerif.

Drawing on ideas from the vast amount of existing work on authentication
and authorization we plan to incorporate further features such as delegation and
revocation mechanisms, which are notoriously difficult to combine with privacy
and anonymity properties. This extension will naturally involve the usage of
more sophisticated cryptographic primitives, such as zero-knowledge proofs. We
additionally intend to consider further security properties, such as differential
privacy.
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A Syntax of G2C

Terms
P ::= C Principal

T ::= C Tag

S ::= C ‘(’ arglist ‘)’ Statement

K ::= S ‘@’ P Knowledge

arg ::= C | V | ‘ ∗ ’ Argument

arglist ::= [ arglist ‘,’ ] arg Argument list

tagvarlist ::= [ tagvarlist ‘or’ ] arg Tags/variable list

plist ::= [ plist ‘,’ ] P Principal list

statlist ::= [ statlist ‘,’ ] S Statement list

knowlist ::= [ knowlist ‘or’ ] K Knowledge list

Expressions
princ ::= [ princ ] P ‘:’ T Principals

stats ::= [ conf ] S ‘:’ tagvarlist Statements

tags ::= [ tags ] T ‘< ’ T Tags
| [ tags ‘< ’ ] T ‘< ’ T
| [ tags ‘< ’ ] T ‘< ’ T ‘< ’ T

rules ::= [ rules ] S ‘:-’ C ‘[’ statlist ‘]’ Rules

input ::= [ input ] K Input

goals ::= [ goals ] K Goals

Specification
spec ::= ‘Principals:’ princ Specification

‘Input:’ input
‘Rules:’ rules
‘Goals:’ goals
‘Tags:’ tags
‘Statements:’ stats

Figure 3: Formal grammar for the specification language G2C.

A formal grammar for the syntax of G2C is shown in Figure 3. Optional parts
are enclosed in square brackets [·], literal character sequences are enclosed in single
quotes ‘·’, choice is denoted by · | ·. We assume C to be constants (strings consisting of
{a, . . . , z, 0, . . . , 9}) and V to be variables (strings consisting of {a, . . . , z}, beginning
with a capital letter).

We call a specification syntactically well-formed iff all of the following hold.

1. The argument lists of rules do not contain wildcards.
2. Rules are safe: the argument lists of head statements of rules do not contain un-

bound variables, i.e., all variables are bound in the body statements.
3. Rules do not introduce constants, i.e., all constants occurring in the head statement

must also occur in the body statements.
4. The argument lists of input statements contain only constants and wildcards.
5. The argument lists of goal statements contain only constants.
6. The arity n of a statement s(s1, . . . , sn) ∈ S is the same for all occurrences of s.
7. All principals P ∈P are declared in the section Principals.

We call a specification consistent if the following holds for all P ∈ P, S, Si ∈ S :

1. input(S@P )⇒ may access(P, S)
2. goal(S@P )⇒ may access(P, S)
3. (S ← f [S1, . . . , Sn]) ∈ R ⇒ ∀i 6=j : Si 6= Sj
4. ((S ← f [S1, . . . , Sn]) ∈ R ∧ ∀i : may access(P, Si)) ⇒ may access(P, S)

The intuition behind the last requirement is that whenever there exists a rule r ∈ R
for which P knows all necessary arguments, then P can compute the function value of
r and hence the specification should permit the access to the computed value.



B Proof for Theorem 1

Proof. MsgCplx ∈ NP since any E ⊆ E with
∑
e∈E c(e) ≤ c∗ serves as poly-length

witness, verifiable by a poly-time bounded Turing machine.
The remainder of the proof is a poly-time Karp reduction from 3-SAT. Let a 3-SAT
formula F in conjunctive normal form (CNF) with r variables and m clauses be given:

F =
∧

i∈{1,...,m}

Ki where Ki = x
αi1
i1
∨ xαi2

i2
∨ xαi3

i3

The superscript αij ∈ {+,−} denotes whether variable xij occurs positive or negated.
Construct the graph GF as follows (see Figure 4 for illustration). For each variable

xi ∈ {x1, . . . , xr} introduce two nodes xi, xi ∈ Nk and a node vi ∈ Nk with edges
(xi, vi), (xi, vi) ∈ E . Introduce another node v ∈ Nc that has an incoming edge from
every node vi. For each clause Ki introduce a node ki ∈ Nk with corresponding nodes
xij ∈ Nk for the literals of Ki. Add the edges (xij , ki) for i ∈ {1, . . . ,m} and j ∈
{1, 2, 3}. Finally, create a node c ∈ Nc that has incoming edges from v and all ki.
According to F , whenever a variable xi appears in a clause Kj , an edge from either xi
or xi is drawn to the corresponding literal of Kj (see the two dashed edges as examples).
Note that there is exactly one incoming edge for each literal.

x1 x2x2x1 xr xr

v1 v2 vr

v

...

k1 k2 km

x11 x12
x13 x21 x22

x23
xm1 xm2

xm3

c

...

1 1 1 1 1 1

Figure 4: Graph GF constructed from 3-SAT instance.

All edges ending in variable nodes x1, x1, x2, . . . , xr have a cost of 1, all other edges
have cost 0.

In order to satisfy node v, for each variable xi either the positive or the negative
variant has to be selected. This gives a cost of exactly r. If the formula F is satisfiable,
then any satisfying assignment will have the same cost r, since any variable xi has a
fixed assignment to either true or false. On the other hand, if F is not satisfiable, then
there is at least one clause Ki for which a dotted edge is missing. This edge would
satisfy the clause, incrementing the total cost to at least r + 1.

Finally, we have that F is satisfiable iff GF has cost r.
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